inorganic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Lithium cobalt(II) pyrophosphate, Li_{1.86}CoP₂O₇, from synchrotron X-ray powder data

Hui Zhou, Shailesh Upreti, Natasha A. Chernova and M. Stanley Whittingham*

Chemistry and Materials, SUNY Binghamton, Binghamton, NY, USA Correspondence e-mail: stanwhit@gmail.com

Received 30 August 2011; accepted 19 September 2011

Key indicators: powder synchrotron study; T = 297 K; mean $\sigma(O-Li) = 0.020$ Å; disorder in main residue; R factor = 0.057; wR factor = 0.080; data-to-parameter ratio = 91.1.

Structure refinement of high-resolution X-ray powder diffraction data of the title compound gave the composition $\text{Li}_{1.865}\text{CoP}_2\text{O}_7$, which is also verified by the ICP measurement. Two Co sites exist in the structure: one is a CoO_5 square pyramid and the other is a CoO_6 octahedron. They share edges and are further interconnected through P_2O_7 groups, forming a three-dimensional framework, which exhibits different kinds of intersecting tunnels containing Li cations and could be of great interest in Li ion battery chemistry. The structure also exhibits cation disorder with 13.5% Co residing at the lithium (Li1) site. Co seems to have an average oxidation state of 2.135, as obtained from the strutural stochiometry that closely supports the magnetic susceptibility findings.

Related literature

For related structures, see: Adam et al. (2008); Nishimura et al. (2010); Zhou et al. (2011). For related materials with Na⁺ and K⁺ cations, see: Erragh et al. (1991); Sanz et al. (1999); Beaury et al. (2004); Gopalakrishna et al. (2005); Bih et al. (2006); Guesmi et al. (2007). For related structural frameworks, see: Beaury et al. (2004); Fagginani & Calvo (1976); Sandström et al. (2003); Etheredge & Hwu (1995); El Maadi et al. (1995); Huang & Hwa (1998); Sanz et al. (1999); Erragh et al. (1998). Pseudovoigt profile coefficients as parameterized in Thompson et al. (1987) and Finger et al. (1994).

Experimental

Crystal data

CoLi_{1.865}O₇P₂ c = 10.95952 (4) Å $M_r = 245.82$ $\beta = 101.7664$ (2)° Monoclinic, $P2_1/a$ V = 1015.83 (1) Å³ D = 9.69622 (4) Å D = 9.69622 (4) Å

Synchrotron radiation, T = 297 K

 $\lambda = 0.413988 \text{ Å}$ irregular shape, 15 × 13 mm $\mu = 0.89 \text{ mm}^{-1}$

Data collection

Advanced Photon Source Data collection mode: transmission diffractometer Scan method: continuous

Specimen mounting: kapton capillary

vap.mar.

Refinement

 $R_{\rm p} = 0.057$ $\chi^2 = 2.624$ $R_{\rm wp} = 0.080$ 24500 data points $R_{\rm exp} = 0.049$ 269 parameters $R(F^2) = 0.04534$

Data collection: Advance Photon Source Argonne National Laboratory; cell refinement: *GSAS* (Larson & Von Dreele, 2000); data reduction: *Powder4* (Dragoe, 2001); program(s) used to solve structure: *GSAS*; program(s) used to refine structure: *GSAS*; molecular graphics: *CrystalMaker* (Palmer, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Use of the Advanced Photon Source at the Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE–AC02-06CH11357. The research at Binghamton was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Contract No. DE–AC02-05CH11231, under the Batteries for Advanced Transportation Technologies (BATT) Program subcontract # 6807148.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2175).

References

Adam, L., Guesdon, A. & Raveau, B. (2008). J. Solid State Chem. 181, 3110–3115.

Beaury, L., Derouet, J., Binet, J., Sanz, F. & Ruiz-Valero, C. (2004). J. Solid State Chem. 177, 1437–1443.

Bih, H., Saadoune, I. & Mansori, M. (2006). *Moroc. J. Condens. Matter*, **7**, 74–76.

Dragoe, N. (2001). J. Appl. Cryst. 34, 535.

El Maadi, A., Boukhari, A. & Holt, E. M. (1995). *J. Chem. Crystallogr.* **25**, 531–536

Erragh, F., Boukhari, A., Elouadi, B. & Holt, E. M. (1991). *J. Cryst. Spect. Res.* **21**, 321–326.

Erragh, F., Boukhari, A., Sadel, A. & Holt, E. M. (1998). *Acta Cryst.* C54, 1373–1376.

Etheredge, K. M. S. & Hwu, S. J. (1995). Inorg. Chem. 34, 1495–1499.

Fagginani, R. & Calvo, C. (1976). Can. J. Chem., 54, 3319-3324.

Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.
Gopalakrishna, G. S., Mahesh, M. J., Ashamanjari, K. G. & Shashidharaprasad,
J. (2005). J. Cryst. Growth, 281, 604–610.

Guesmi, A., Ouerfelli, N., Mazza, D. & Driss, A. (2007). Acta Cryst. A63, s277–s278

Huang, Q. & Hwu, S. J. (1998). Inorg. Chem. 37, 5869-5874.

Larson, A. C. & Von Dreele, R. B. (2000). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.

Nishimura, S., Nakamura, M., Natsui, R. & Yamada, A. (2010). J. Am. Chem. Soc. 132, 13596–13597.

Palmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.

inorganic compounds

Sandström, M., Fischer, A. & Boström, D. (2003). *Acta Cryst.* E**59**, i139–i141. Sanz, F., Parada, C., Rojo, J. M., Reuiz-Valero, C. & Saez-Puche, R. (1999). *J. Solid State Chem.* **145**, 604–611.

Thompson, P., Cox, D. E. & Hastings, J. B. (1987). *J. Appl. Cryst.* **20**, 79–83. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925. Zhou, H., Upreti, S., Chernova, N., Hautier, G., Ceder, G. & Whittingham, M. S. (2011). *Chem. Mater.* **23**,293–300.

Zhou et al. • $CoLi_{1.865}O_7P_2$ **i59** Acta Cryst. (2011). E67, i58-i59

supplementary m	aterials	

Acta Cryst. (2011). E67, i58-i59 [doi:10.1107/S1600536811038451]

Lithium cobalt(II) pyrophosphate, Li_{1.86}CoP₂O₇, from synchrotron X-ray powder data

H. Zhou, S. Upreti, N. A. Chernova and M. S. Whittingham

Comment

 $A_2MP_2O_7$ is a large family, in which various frameworks are encountered consisting of MO₆ octahedra (Fagginani *et al.*, 1976; Sandström *et.al.*, 2003) and MO₄ polyhedra (Etheredge *et al.*, 1995; Erragh *et al.*, 1998; Sanz *et al.*, 1999) interconnected through P_2O_7 groups (Fig. 1). Dimeric M_2O_{10} units, built up of two edge-sharing MO₆ octahedra, are only observed for some $A_2MP_2O_7$ pyrophosphates (El Maadi *et al.* 1995; Huang *et al.* 1998) and dimeric M_2O_{11} units(corner-shared MO₆) seem to be much more rare, just observed for $Na_2CoP_2O_7$ (Erragh *et al.* 1991). Two forms of structures were found for $Na_2CoP_2O_7$ by Erragh *et al.* 1991: one is triclinic and another one is orthorhombic. The tetragonal structure of $Na_2CoP_2O_7$ was reported by Sanz *et al.* 1999 and they found that the tetragonal form could be a derivative of the orthorhombic form, with a higher point symmetry for the former. In addition, the tetragonal structured $Na_2CoP_2O_7$ was described by Guesmi *et al.* 2007. To our knowledge, the $A_2CoP_2O_7$ with Li as cation has never been reported.

Here, we report a new Li containing solid with a three-dimensional framework (Fig. 2) crystallizing in the monoclinic space group $P2_1/a$. Its structure is similar to the recently reported Li₂MnP₂O₇ (Adam *et al.* 2008), a new member of the A₂MP₂O₇ family: original M_2 O₉ units, built up of one MO₅ trigonal bipyramid sharing one edge with one MO₆ octahedron, sharing corners with P₂O₇ pyrophosphate groups to form undulating $(M_4$ P₈O₃₂)_∞ layers. A 3-D framework results from the interconnection between metal oxide and pyrophosphate groups, and the lithium cations are located in the tunnels thus formed (Fig 2). The structure of the related Fe-compound has been studied by us (Zhou *et al.* 2011) and Nishimura *et al.* (2010), as well as the electrochemical properties, which showed that it is a good candidate for the cathode material of lithium-ion batteries. The title compound also has the potential to work as the cathode material for lithium-ion batteries. We present here its crystal structure, as determined and refined from synchrotron powder X-ray diffraction data (Fig. 3).

Experimental

The powder sample was synthesized through a "wet" method based on mixing stoichiometric aqueous solutions of the precursors followed by thermal treatments. The general procedure involves the mixing of soluble precursors in distilled water followed by a slow evaporation through continuous stirring to dryness before annealing the resultant solids. The precursors for the synthesis were Li(CH₃COO),Co(CH₃COO)₂. 4H₂O,and NH₄H₂PO₄, which were dissolved in 100 ml distilled water in a molar ratio of 2:1:2 (1.32 g, 2.49 g and 2.3 g respectively) to give a 0.02 molar lithium solution. The self-adjusted pH of all the solutions were found to be around 4.5. The solution was stirred and evaporated on a hot-plate in the hood followed by vacuum oven drying overnight at 363 K. The resulting solid was preheated in a H2/He (8.5°/91.5° by volume) atmosphere at 673 K for 4h to decompose the precursors followed by reheating under the same atmosphere up to 873 K for 16h with intermittent grinding to obtain the pink colored powder as final product. The sample was also analyzed with a Perkin-Elmer ICP-OES Optima 7000 DV for the elemental content. The average result of 3 analyses showed that the ratio of Li: Co: P is 1.85: 0.996:2. In addition, the SQUID magnetic study on the sample using a Quantum Design MPMS XL SQUID magnetometer showed that the effective magnetic moment of it is 5.23m_Bwhich is typical divalent Co.

supplementary materials

Refinement

During structural refinement, occupancy factor for Li1 and Co3 were refined using constrains for atomic coordinate, atomic displacement parameter, and keeping the sum of occupancy factor equals to unity, which later were fixed to their close refined values as 0.73 and 0.27 respectively. Occupancy for Co1 was also observed to be deficient and fixed to it's closely refined value of 0.739 to 0.73, in final refinement cycles.

Figures

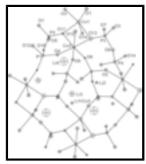


Fig. 1. Thermal ellipsoid view of Li_{1.86}CoP₂O₇ framework, having edge shared CoO₅ and CoO₆ interconnected through P₂O₇ moities.

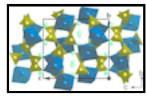


Fig. 2. Polyhedral view of unit cell packing showing tunneled structures containing Li ions, viewed along [100].

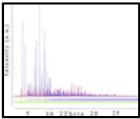


Fig. 3. X-ray Rietveld refinement profiles for Li_{1.86}CoP₂O₇, data recorded at room temperature. Triangles mark the experimental points (red), solid line is the calculated profile (blue) and bottom trace shows the difference curve (green).

Lithium cobalt(II) pyrophosphate

Crystal data

 $CoLi_{1.865}O_7P_2$

 $M_r = 245.82$

Monoclinic, P2₁/a

Hall symbol: -P 2yab

a = 9.76453 (4) Å

b = 9.69622 (4) Å

c = 10.95952 (4) Å

 $\beta = 101.7664 (2)^{\circ}$

 $V = 1015.83 (1) \text{ Å}^3$

Z = 8

F(000) = 948.7

 $D_{\rm x} = 3.214 \; {\rm Mg \; m}^{-3}$

Melting point: 1023 K

Synchrotron radiation, $\lambda = 0.413988 \text{ Å}$

 $\mu=0.89~\text{mm}^{-1}$

T = 297 K

Particle morphology: block

pink

irregular, 15 × 13 mm

Specimen preparation: Prepared at 873 K and

101.325 kPa

Data collection

Advanced Photon Source

diffractometer

Radiation source: Synchrotron Data collection mode: transmission

readiation source. Sync

Scan method: continuous

Specimen mounting: kapton capillary

Refinement

 $R_{\rm p} = 0.057$

Least-squares matrix: full

Excluded region(s): Reflections exceeding 2-theta 30 were omitted for the ease of refinement.

Profile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in Thompson *et al.*, (1987) and Finger *et al.*

(1994).

#1(GU) = 6.454 #2(GV) = -0.998 #3(GW) = 0.075 #4(GP) = 0.000 #5(LX) = 0.327 #6(LY) = 0.000 #7(ST) = 0.0011 #9(LT) = 0.0014 #9(Fig. 2) =

#7(S/L) = 0.0011 #8(H/L) = 0.0014 #9(trns) = 0.00 #10(shft) = 0.0000 #11(stec) = 0.00 #12(ptec) = 0.00 #13(sfec) = 0.00 #14(L11) = 0.067 #15(L22) = 0.070 #16(L33) = 0.058 #17(L12) = 0.010 #18(L13) =

 $0.010 \, \# 19(L23) = -0.004$ Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso.

broadening axis 0.0 0.0 1.0

 $R_{\text{wp}} = 0.080$ $R_{\text{exp}} = 0.049$ $R(F^2) = 0.04534$

0 restraints

 $(\Delta/\sigma)_{\text{max}} = 0.03$

269 parameters

number 1 with 36 terms. Shifted Chebyshev function of 1st kind 1: 165.338 2: -31.4210 3: -8.19118 4: 6.28432 5: -10.8524 6: 14.3842 7: -8.22810 8: -0.949190 9: 13.3092 10: -14.8044 11: 4.75285 12: -1.09442 13: -0.739293 14: 5.47743 15: -2.87265 16: 1.05489 17: -3.22764 18: 1.21714 19: 0.537209 20: -3.25962 21: 2.18736 22: -1.12437 23: -2.15219 24: 3.41374 25: -3.88852 26: 1.14500 27: 3.06741 28: -3.05038 29: 0.529274 30: 0.298855 31: -4.06399 32: 1.50867 33: 1.15056 34: -2.20673 35: 0.550944 36:

Background function: GSAS Background function

5.540140E-02

 $\chi^2 = 2.624$

24500 data points

Special details

Experimental. Data was collected with powder sample packed in Kapton capillary

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Co1	0.25281 (15)	0.71550 (15)	0.18010 (14)	0.0137 (4)*	0.73
Co2	0.30165 (11)	0.43043 (11)	0.32719 (10)	0.0095 (3)*	
P1	0.3790(2)	0.6536(2)	0.5771 (2)	0.0078 (5)*	
P2	0.0613 (2)	0.9265(2)	0.24116 (18)	0.0089 (5)*	

supplementary materials

na.	0.0010 (0)	0.4554 (0)	0.770(4.(4.0)	0.04.00 (5):#	
P3	0.0210 (2)	0.4551 (2)	0.75861 (19)	0.0103 (5)*	
P4	0.6144 (2)	0.7956 (2)	-0.1113 (2)	0.0117 (6)*	
O1 O2	0.1615 (5) 0.4709 (5)	0.8210 (5) 0.7806 (5)	0.3113 (5)	0.0130 (14)*	
O2 O3	0.4709 (3)	0.7808 (3)	-0.0792 (4) 0.1472 (5)	0.0106 (12)* 0.0107 (13)*	
04	0.0302 (5)	0.8437 (5)	0.5592 (4)	0.0107 (13)*	
O5	0.0302 (3)	0.4292 (5)	-0.1033 (4)	0.0110 (14)*	
06	0.1790 (5)	0.8356 (5)	-0.1511 (4)	0.0106 (13)*	
O7	0.0189 (5)	0.4120 (4)	0.6224 (4)	0.0087 (13)*	
O8	0.1866 (5)	0.2976 (4)	0.4146 (4)	0.0047 (12)*	
O9	0.1013 (5)	0.6017 (4)	0.7747 (4)	0.0116 (13)*	
O10	0.3827 (5)	0.5734 (5)	0.7087 (4)	0.0061 (12)*	
O11	0.4152 (5)	0.5900 (4)	0.2661 (4)	0.0085 (13)*	
O12	0.2775 (5)	0.5646 (5)	0.4803 (4)	0.0134 (13)*	
O13	0.3713 (5)	1.0314 (5)	-0.2124 (5)	0.0205 (15)*	
O14	0.2204 (5)	0.6299 (5)	-0.0018 (4)	0.0094 (13)*	
Li1	1.3433 (3)	0.9255 (3)	-0.0397 (3)	0.0087 (7)*	0.73
Li2	0.0807 (17)	0.1083 (15)	0.0261 (15)	0.009 (4)*	
Li3	0.6728 (15)	0.0711 (14)	0.5465 (14)	0.029 (4)*	
Li4	0.400(2)	0.246 (2)	0.5725 (17)	0.065 (7)*	
Co3	1.3433 (3)	0.9255 (3)	-0.0397 (3)	0.0087 (7)*	0.27
	. 9				
Geometric parame	ters (Å, °)				
Co1—O1		2.105 (5)	P2—O5 ^v		1.524 (4)
Co1—O3		2.028 (4)	P2—O10 ^{iv}		1.584 (5)
Co1—O11		2.067 (4)	P2—O11 ^{vi}		1.516 (5)
Co1—O13 ⁱ		2.226 (5)	P3—O3 ⁱⁱ		1.514 (5)
Co1—O14		2.123 (5)	P3—O7		1.546 (5)
Co2—O4 ⁱⁱ		2.030 (5)	P3—O9		1.616 (4)
Co2—O6 ⁱ		2.180 (5)	P3—O13 ^{vii}		1.563 (5)
Co2—O8		2.068 (4)	P4—O2		1.519 (5)
Co2—O11		2.091 (4)	P4—O6 ⁱⁱⁱ		1.524 (4)
Co2—O12		2.173 (4)	P4—O9 ^{viii}		1.582 (5)
Co2—O13 ⁱ		2.128 (5)	P4—O14 ⁱⁱⁱ		1.589 (5)
P1—O4 ⁱⁱⁱ		1.529 (5)	Co3—O2 ^{ix}		1.983 (5)
P1—O8 ^{iv}		1.547 (4)	Co3—O3 ^{ix}		2.104 (6)
P1—O10		1.633 (5)	Co3—O6 ^{ix}		2.006 (6)
P1—O12		1.556 (4)	Co3—O13 ^{ix}		2.220 (5)
P2—O1		1.512 (5)	Co3—O14 ^x		2.154 (5)
O1—Co1—O3		100.14 (19)	O8—Co2—O11		169.24 (17)
O1—Co1—O11		111.53 (19)	O8—Co2—O13 ⁱ		96.85 (19)
O1—Co1—O14		145.94 (21)	O11—Co2—O13 ⁱ		83.05 (18)
O3—Co1—O11		90.63 (18)	O8 ^{iv} —P1—O10		108.18 (27)
O3—Co1—O14		94.60 (20)	O8 ^{iv} —P1—O12		109.11 (29)

supplementary materials

O11—Co1—O14	98.73 (18)	O10—P1—O12	103.57 (26)
O4 ⁱⁱ —Co2—O8	84.60 (18)	O1—P2—O5 ^v	111.42 (29)
O4 ⁱⁱ —Co2—O11	95.03 (18)	O1—P2—O10 ^{iv}	106.90 (27)
O4 ⁱⁱ —Co2—O13 ⁱ	177.02 (20)	O5 ^v —P2—O10 ^{iv}	104.39 (29)

Symmetry codes: (i) -x+1/2, y-1/2, -z; (ii) -x+1/2, y-1/2, -z+1; (iii) x+1/2, -y+3/2, z; (iv) -x+1/2, y+1/2, -z+1; (v) -x+1/2, y+1/2, -z; (vi) x-1/2, -y+3/2, z; (vii) x-1/2, -y+3/2, z+1; (viii) x+1/2, -y+3/2, z-1; (ix) x+1, y, z; (x) -x+3/2, y+1/2, -z.

Fig. 1

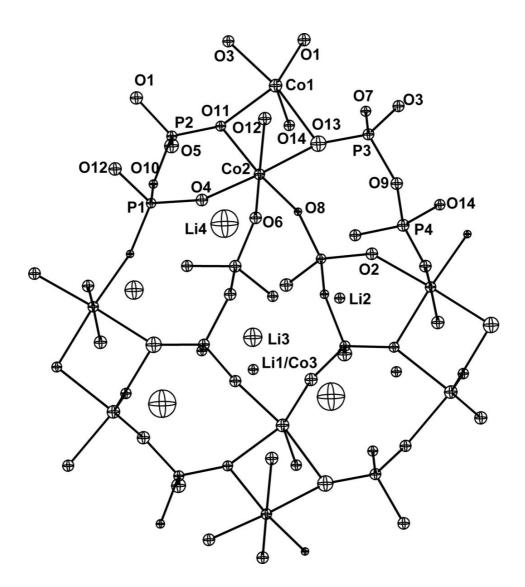


Fig. 2

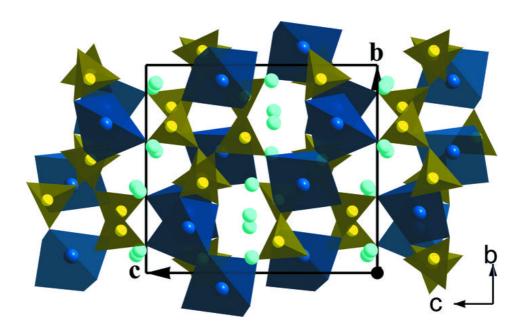
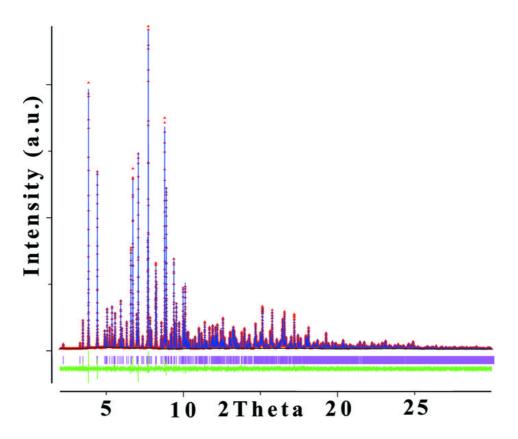



Fig. 3

